Welcome...

Welcome to the archive of Kansas NSF EPSCoR (KNE) news and announcements blog. Stay up-to-date with all the happenings, discoveries, events and funding opportunities associated with KNE by visiting https://nsfepscor.ku.edu./

Thursday, October 25, 2018

Benedictine College student studies the impacts of fire severity on fungi


Hannah Dea
     When Hannah Dea took a Mycology course at Benedictine College, taught by Dr. Janet Paper, she became “fascinated by the enormous role that fungi play in the life and health of plants.” She especially enjoyed learning about mycorrhizal fungi, the fungi that form a mutualist relationship with the root systems of plants as well as provide plants with nutrients. Because of this course, she wanted to continue researching ecological topics, so she found and decided to apply to the 2018 Ecology and Evolutionary Biology (EEB) summer research experience for undergraduates (REU) at the University of Kansas (KU).
     Upon her acceptance into the EEB REU program, Hannah chose a fungi research project that paired her with Dr. Benjamin Sikes, Assistant Professor of EEB at KU, Assistant Scientist at the Kansas Biological Survey, and Kansas NSF EPSCoR RII Track-1 Award OIA-1656006 titled: Microbiomes of Aquatic, Plant, and Soil Systems across Kansas plant systems research team member. She titled her project Fire severity effects on ectomycorrhizal colonization of Longleaf pine and Loblolly pine. Hannah explained her research project as follows:
Hannah analyzing ectos roots
“My project looked at how fire severity affects the relationship between microbial communities and soil nutrients and how this in turn affects a fire tolerant and a non-fire tolerant species of pine. I wanted to find out whether a more severe fire, which would kill off the microbial communities and release nutrients from the soil, would make the soil conditions more favorable to the fire tolerant Longleaf pine or to the non-fire tolerant Loblolly pine. My hypothesis was that, since fire tolerant species are more accustomed to fire affected soils, the fire tolerant species would be benefited by increasing fire severity while non-fire tolerant species would not. To test this, after both species were grown in high, medium, and low severity fire soil for 3 months, I took the percent colonization of ectomycorrhizae (a fungal mutualist on the plant roots essential for nutrient uptake) on both species of pine as well as the biomass of each plant. I found that while the biomass of the two species did not differ, the Longleaf pine had a much more efficient relationship with the ectomycorrhizae than the Loblolly pine. This showed that the fire tolerant species had a bit of an advantage over the non-fire tolerant species."
     When she was asked what the best part of her summer research experience was, she replied “My favorite part of the experience was living in a research community that allowed me to focus on sharpening my research skills. There were so many resources at KU that allowed me to do science without hindrance from lack of help or resources. I love plant and fungal ecology, and this allowed me to dive into it for a whole summer!” She added that the experience taught her how to conduct research, create good questions, make predictions, collect and analyze data and to communicate science “in a way that even non-scientists would understand.”
     Hannah is from Templeton, Iowa and is majoring in Biology with a minor in Latin at Benedictine College in Atchison, KS. She is a student leader involved with Campus Ministries, and she assists with organizing and setting up masses on campus. Hannah has also been an officer in the Biology Club and is currently a Latin tutor for the college. Participating in this EEB REU reaffirmed her desire to pursue a career as a conservation biologist, an educator, and/or a naturalist. She plans to earn her masters degree in ecology after graduation. 

Monday, October 15, 2018

Kansas State University MAPS researchers receive award from Office of Biological and Environmental Research in the Department of Energy


Dr. Jesse Nippert and Dr. Lydia Zeglin
KSU
   The Office of Biological and Environmental Research in the Department of Energy has awarded nearly $1 million dollars to two Kansas NSF EPSCoR RII Track-1 Award OIA-1656006 titled: Microbiomes of Aquatic, Plant and Soil Systems across Kansas (MAPS) researchers from Kansas State University (KSU). Dr. Jesse Nippert, associate professor of biology at KSU and part of the MAPS plant systems focus team, and Dr. Lydia Zeglin, assistant professor of biology at KSU and part of the MAPS acquatic systems focus team, plan to combine observational, experimental and modeling approaches in an effort to enhance the predictability of ecosystem consequences related to shrub encroachment and drought in the Great Plains region. The title of their project is DE-SC001109037: Using root and soil traits to forecast woody encroachment dynamics in mesic grassland. They will also be working with collaborators Kate McCulloh, assistant professor at the University of Wisconsin-Madison, and Kevin Wilcox, assistant professor at the University of Wyoming. The team will conduct experiments and collect their data at the Konza Biological Field Station. They will use root and soil traits, taken at various soil depths, which contain microbes, water and a large amount of carbon to forecast the plant encroachment dynamics associated with grasslands that receive moderate amounts of precipitation. The data collected and the results from this project “will define the depth-resolved feedbacks of drought and dominant vegetation on below ground root architecture, soil microbial carbon cycling, and ecosystem carbon balance.”

For additional information regarding the proposal go to: DE-SC001109037
Click here for the KSU press release

Thursday, October 11, 2018

ANNOUNCING MAPS First Award Funding Opportunity

     Kansas NSF EPSCoR is announcing a funding opportunity for First Awards in the areas related to the current Kansas NSF EPSCoR focus of microbiomes as broadly construed to be in aquatic, plant and/or soil systems. The First Award program helps early career faculty become competitive for funding from the research directorates at the National Science Foundation. 

The full request for proposals with submission instructions can be downloaded as a PDF at: http://www.nsfepscor.ku.edu/funding.html

Submission Deadlines:

     Letters of Intent due by 5:00 pm on Wednesday, October 31, 2018.

     Full proposals due by 5:00 pm on Thursday, December 20, 2018 

Please note new proposal submission details included in the RFP.

Eligible to apply is any individual tenure track faculty member who:

  • is currently untenured at the assistant professor rank at Kansas State University, University of Kansas, Wichita State University, Emporia State University, Fort Hays State University, Pittsburg State University or Washburn University; 
  • is within the first three years of his/her faculty appointment;
  • has not received a previous First Award or similar funding from another EPSCoR or EPSCoR-like (Centers of Biomedical Research Excellence, COBRE) program in Kansas; and
  • is not currently be nor previously been a lead Principal Investigator of a research grant funded by a federal agency.

In addition, one of the following conditions must apply:

  • The Principal Investigator has a pending proposal or is planning to submit a proposal to the NSF (or other federal funding agency) for the proposed research submitted to this program.  If in the planning stages, the proposed research must be submitted to a federal funding agency by July 31, 2020. 
  • The Principal Investigator has had the proposed research declined by the NSF (or other federal funding agency) and has a plan to re-submit the proposed research by July 31, 2020. 

Only projects with research in areas that are related to the current Kansas NSF EPSCoR focus of microbiomes as broadly construed to be in aquatic, plant and/or soil systems are eligible for First Awards.

Workforce Development, Education and Outreach funding for the MAPS first awards is provided by the Kansas NSF EPSCoR RII Track-1 Award OIA-1656006 titled: Microbiomes of Aquatic, Plant, and Soil Systems across Kansas. The award's workforce development and educational objectives are designed to enhance STEM education in Kansas by supporting activities that will lead to an expanded STEM workforce or prepare a new generation for STEM careers in the areas of aquatic, plant and soil microbiome environments and ecological systems.

Wednesday, October 10, 2018

NSF-FUNDED GRADUATE POSITIONS AT KANSAS STATE UNIVERSITY IN MICROBIOMES OF AQUATIC, PLANT OR SOILS (MAPS)


     The Division of Biology at Kansas State University is recruiting diverse, highly-qualified graduate students to assist with understanding the linkages among microbiomes of aquatic, plant and soil (MAPS) ecosystems across the state ofKansas. 
The goal of MAPS is to understand:
  1. How microbiome structure and function among these systems change across the precipitation gradient of Kansas and land use, and 
  2. How those changes in microbiomes affect broader community and ecosystem properties. In all, the integrated and collaborative NSF-funded project is driven by >15 investigators, all of whom work collaboratively and train students in an interdisciplinary framework.
     If you are interested in developing skills in collaborative, team-based science focused on deploying cutting-edge tools in environmental microbiology and informatics, please contact the listed individuals who might serve as your graduate advisor. Students must discuss their interests with a potential advisor (by email or by scheduling a phone conversation by email) prior to submitting an application. 
Applications due by 
15 December for Fall or Summer 2019 start.




Agronomy:

Biology:

Plant Pathology
Workforce Development, Education and Outreach funding for these MAPS graduate positions is provided by the Kansas NSF EPSCoR RII Track-1 Award OIA-1656006 titled: Microbiomes of Aquatic, Plant, and Soil Systems across Kansas. The award's workforce development and educational objectives are designed to enhance STEM education in Kansas by supporting activities that will lead to an expanded STEM workforce or prepare a new generation for STEM careers in the areas of aquatic, plant and soil microbiome environments and ecological systems

Monday, October 8, 2018

UIUC Actuarial Science major runs simulations to predict host infections in bird populations of the Hawaiian archipelago during KU REU


Megan Resurreccion
     Last spring, Megan Resurreccion met with her informatics adviser at the University of Illinois Urbanna-Champaign (UIUC) to discuss going to graduate school. During this meeting, she was encouraged to obtain research experience, so she decided to apply to a summer research experience for undergraduates program (REU). Megan specifically wanted a research experience that offered any kind of mathematical or statistical focus. In making her decision for where to apply, she commented, “Biology isn't normally my thing, but I wanted to see what computational work in that field was like.” Her search led her to a mathematical modeling project offered through the 2018 Ecology and Evolutionary Biology (EEB) summer REU program at the University of Kansas (KU) and supervised by Dr. Folashade B. Agusto, Assistant Professor in the EEB department at KU and part of the research team for the Kansas NSF EPSCoR RII Track-1 Award OIA-1656006 titled: Microbiomes of Aquatic, Plant, and Soil Systems across Kansas.
Her poster describing her study and results 
   
    Megan titled this project, Effects of Breeding Phenology on Avian Malaria Transmission Model. She described her research and her findings as follows: “In the Hawaiian archipelago, there is an infectious disease called avian malaria which has been affecting many native Hawaiian birds, transmitted by southern house mosquitoes. Simulations were run in Matlab to predict what total host infection rates of a bird species was based on differing breeding phenology (seasonality). The breeding phenology refers to the various times of year that the birds and mosquitoes had their breeding seasons in, so a single bird peak breeding season was estimated and compared with five other mosquito peak breeding seasons. The temporal distance between a mosquito breeding season and bird breeding season was then used to predict the infection rate. This was also tested in terms of low and high elevation since infection rates have been known to differ at various levels. The results concluded that when the mosquito breeding season was later than the bird breeding season, total host infection rates were higher. Then a simulation for differences in low and high elevations were run. For low elevations, total host infection rates were at their highest regardless of breeding phenology but were highest when the mosquito breeding season was before the bird breeding season. For high elevations, total host infection rates were highest when the mosquito breeding season was later than the bird breeding season. The importance of this is that it's important to preserve the biodiversity of the Hawaiian archipelago, and conservation measures should be implemented depending on when total host infection rates were. Our findings indicate a higher rate of total host infection at lower elevations than at higher elevations. Additionally, total host infection rates are higher when vector breeding season peaks occur after the breeding season peaks of native Hawaiian birds. Conclusively, based on the breeding season peak phenology, there should be measures taken to protect Hawaiian bird species since avian malaria is a prominent reason for population decline in these birds. If not, the population decline and potential extinction of bird species can have drastic effects on the biodiversity of the Hawaiian archipelago.”
     Megan said the best part of the summer research experience was “getting to know the undergraduates, learning what their research was about, and what kind of possibilities for research are out there, even if it isn't something I tend to explore more in depth.” She added that she also learned what it takes to conduct research such as “reading up on related literature, writing up a paper, running trials, fixing errors” and working in a lab.
     Currently, Megan is a student at the UIUC majoring in actuarial science and minoring in mathematical statistics, informatics, and creative writing. She also works as a Resident Advisor in University Housing at UIUC. In addition to her studies and work, Megan is a member of the Actuarial Science Club and is looking forward to serving as a Mathematics Ambassador for the UIUC Department of Mathematics. As for her future plans, Megan would like to attend graduate school for a masters or Ph.D. in statistics, and eventually pursue a career in the realm of statistics and data science.

Thursday, October 4, 2018

MAPS investigator, Dr. Walter Dodds, receives the KSU Karen Ann Griffith Research Award

Karen Ann Griffith, Dr. Walter Dodds, Dr. Amit Chakrabarti
    Dr. Walter Dodds, University Distinguished Professor of Biology at Kansas State University (KSU) and co-principal investigator leading the aquatics team for the Kansas NSF EPSCoR RII Track-1 Award OIA-1656006 titled: Microbiomes of Aquatic, Plant, and Soil Systems across Kansas (MAPS), has received the Karen Ann Griffith Research Award. He will be honored at a reception on October 10, 2018 from 4:00 pm to 5:30 in the Tadtman Boardroom of the KSU Alumni Center. This award has been granted to Dr. Dodds for his interdisciplinary research related to Kansas NSF EPSCoR RII Track-1 Award OIA-1656006 and for connecting faculty from Biology, Agronomy, Plant Pathology and Geology in this collaborative research effort. Dr. Amit Chakrabarti, Dean of the KSU College of Arts and Sciences will deliver remarks. 


Monday, October 1, 2018

KU MAPS researchers receive NSF ERA award to examine soil properties in response to climate change using math models

Dr. Pam Sullivan and Dr. Sharon Billings
KU
   Dr. Pam Sullivan, Assistant Professor, Geography and Atmospheric Science, and Dr. Sharon Billings, Professor of Ecology and Evolutionary Biology and Senior Scientist, Kansas Biological Survey, at the University of Kansas (KU) have received an NSF Earth Sciences grant award to study the changes of soil properties in response to climate change. The title of their project is RAISE-SitS: Designing models to forecast how biogeochemical fluctuations in soil systems govern soil development, terrestrial water storage and ecosystem nutrient fluxes (NSF EAR #1841614).
     The researchers will develop new mathematical models to study the causes of changing soil structures and examine plant-soil-water responses to varying environmental conditions.  These new “models will allow the effects of soil structure fluctuations on ecosystem processes to be evaluated at diverse spatial and time scales,” and “may improve forecasting of future availability and quality of water resources, soils, and associated ecosystem services.” More specifically, the “soil ecosystem models (empirical and process-based) will be developed at multiple spatial scales to link soil structure and function in order to enhance the prediction of water and biogeochemical fluxes on timescales of decades to centuries. These models will be parameterized using soil, plant, and aquatic microbiome data collected across a strong precipitation gradient in the central USA (part of NSF Kansas Established Program to Stimulate Competitive Research, EPSCoR RII Track-1 Award OIA-1656006 titled: Microbiomes of Aquatic, Plant, and Soil Systems across Kansas) and continental-scale soil databases (e.g., the National Cooperative Soil Survey Soil Characterization Database, United States Department of Agriculture)."These models will also create and make available community tools to examine nutrient fluxes produced by soil, water and biogeochemical feedback, with an ultimate goal of addressing "nationwide problems such as managing the nitrogen cycle and the Gulf of Mexico dead zone" as well as “test climate driven changes in the soil fabric which prompt the emergence of integrated terrestrial responses that are more rapid than typically considered.”

For more information go to NSF EAR #1841614
And KU today 9/17/18

(Quotes in the article taken directly from the NSF EAR #1841614 award abstract)