Welcome...

Welcome to the Kansas NSF EPSCoR (KNE) news and announcements blog. Stay up-to-date with all the happenings, discoveries, events and funding opportunities associated with KNE. Enter your email in the "Follow by email" box below an to the right to stay notified of new posts. Feel free to leave comments.

Wednesday, February 8, 2017

Small College Faculty Collaboration with KU brings a low-cost Surface-Enhanced Raman Scattering (SERS) Instrument to MidAmerica Nazarene University

    As part of the Kansas EPSCoR Track 2 “Collaborative Research: Imaging and Controlling Ultrafast Dynamics of Atoms, Molecules and Nanostructures” small college collaboration initiative, Dr. Jordan Mantha, Associate Professor of Chemistry at the MidAmerica Nazarene University (MNU) partnered with Dr. Chris Elles, Associate Professor of Chemistry at the University of Kansas (KU) to develop a low-cost Surface-enhanced Raman Scattering (SERS) instrument. The SERS instrument is designed to investigate the reaction dynamics of photoswitching molecules interacting with plasmonic fields.  The instrument Dr. Elles and Dr. Mantha constructed was specifically designed to be easily replicated with small, primarily undergraduate institutions in mind.
   Dr. Mantha plans to use the SERS instrument in his Analytical Chemistry course this spring (2017) and he created a new lab for this course “to show SERS as modern surface-selective spectroscopic technique.”  In addition, he will use the SERS instrument in his Quantum Chemistry course to be taught in the fall of 2017.  In this course, he is planning a semester long project incorporating another new lab to mirror class discussions on vibrational spectroscopy.  This lab will provide an engaging hand-on opportunity to study and witness in real time, the concepts of reaction dynamics and plasmonic nanomaterials.  Dr. Mantha stated “This course, in particular, is taken by both Chemistry and Physics majors at MidAmerica Nazarene University and my hope is that this project will help develop our Atomic, Molecular and Optical (AMO) and experimental physics capabilities.”  Both Dr. Mantha and Dr. Elles hope that this collaboration will expose the students at MNU to undergraduate research in physical chemistry/chemical physics, and ultimately spark an interest that encourages them to pursue graduate studies in the STEM fields.
   Overall, Dr. Mantha really appreciated the opportunity to collaborate with a large public university, and “to get back in the lab after five years as a faculty member at a small liberal arts school.”  As a result of this collaboration, Dr. Mantha went on to say, “I’ve learned a lot about plasmonic arrays and ultrafast reaction dynamics over the summer and working with the Elles group has been phenomenal. I’ve made some great new connections with the Kansas physical chemistry community and have something to bring back to my institution that will keep me involved in research and give my students an opportunity to see what ‘real’ science is like.”

Funding for this Collaborative Research Experience was provided by the Kansas and Nebraska NSF EPSCoR Track 2 Grant #1430519 titled: "Imaging and Controlling Ultrafast Dynamics of Atoms, Molecules, and Nanostructures."  The Grant's educational objectives are designed to enhance STEM education in Kansas by supporting activities that will lead to an expanded STEM workforce and prepare a new generation for STEM careers in the areas of atomic/molecular/optical science.