Welcome to the Kansas NSF EPSCoR (KNE) news and announcements blog. Stay up-to-date with all the happenings, discoveries, events and funding opportunities associated with KNE. Enter your email in the "Follow by email" box below and to the right to stay notified of new posts. Feel free to leave comments.

Tuesday, February 5, 2019

MAPS graduate student studies HABs and Kansas water quality

Janaye Hanschu working on
her first independent research project
as an undergraduate
     During the summers of her childhood, Janaye Hanschu would visit the Marion Reservoir located on the Cottonwood River, 3 miles northwest of Marion, Kansas. Because she loved the water, it was a weekly event. Unfortunately, as she got older the lake “would often get shut down due to harmful blue-green algae blooms" (HABs). Harmful blue-green algae is a bacteria know as Cyanobacteria that reproduces rapidly if conditions such as high nutrient and high light levels are present. The dense growth of the algae, or bloom, can produce toxins if it becomes stressed or dies. These toxins impact water quality and are harmful to people, fish, shellfish, marine mammals and birds. According to the 2018 Kansas Water Authority Annual Report to the Governor and Legislature, HABS continue to impact the Marion Reservoir's water quality, and Janaye added, it is “one of the worse lakes in Kansas as far as algae blooms” are concerned. After witnessing, firsthand, the impacts HABs and excess nutrients had on Kansas waterways, Janaye decided she wanted do something about the water quality problems in Kansas.

Janaye collecting samples for the Kansas River RAPIDS project
      So, while she was earning a bachelor’s degree in Biology from Kansas State University (KSU), Janaye pursued her research interest in water quality by working for Dr. Lydia Zeglin's in her Microbial Ecology Lab. Dr. Zeglin is an Assistant Professor of Biology at KSU and is a member of the Aquatics research team for the Kansas NSF EPSCoR RII Track-1 Award OIA-1656006 titled: Microbiomes of Aquatic, Plant, and Soil Systems across Kansas (MAPS).
     After graduating in the fall of 2017, Janaye continued to work for Dr. Zeglin as a research assistant on another NSF research project titled: RAPIDS: Are biogeochemical responses linked to the microbial composition of a defined nutrient and microbial input to a large river? (DEB #1822960). This project involved a collaboration between the Zeglin Microbial Ecology Lab (KSU) and the Burgin Lab at the University of Kansas (KU). The Burgin Lab is led by Dr. Amy Burgin, Associate Professor of Ecology and Evolutionary Biology (EEB) at KU; Environmental Studies Associate Scientist for the Kansas Biological Survey; and a MAPS Aquatics research team member. The RAPIDS project was designed to study nutrients in the Kansas River.
     On November 16, 2018, Janaye presented a poster featuring her RAPIDS research at the MAPS All Science Meeting held at the Konza Prairie Biological Station. The title of her poster was “Do novel inputs to the Kansas River affect the water of sediment microbiome and water chemistry?” She explained her RAPIDS project as follows: “The city of Lawrence bought an old fertilizer plant. The plant contained several gallons of fertilizer dissolved in water. The city needed to dispose of the fertilizer. Initially, the city was selling the fertilizer to farmers to use for their crops. However, the execution was time consuming and a financial burden. As a result, the city got permission from the state and EPA to release the fertilized water into the Kansas River over a time frame of about two months. The release inoculates the water with both nitrogen (nutrients) and microorganisms. This novel input into the Kansas River lead to the question: Does microbial nitrogen processing in the river respond solely to changes in the nitrogen substrate supply, or does changing the microbial community also affect ecosystem-scale biochemistry. We sampled the river every two weeks (in addition to other sampling). At one time point, it was found that there is a microbial community composition (MCC) spike--an increase in microbial diversity--where the fertilizer was being released into the river. The overall MCC was returned to normal by 5 km downstream of the input site, but the microbial types unique to the input can be detected to at least 29 km. There were 23 unique bacterial OTUs in the water downstream of the input, but only 5 of these increased in relative abundance. As for the biochemistry and microbial relationship, for this specific time point, the microbial biochemical processes seem to be turning over the nutrient load at a sufficient rate because the chemical signals are weaker than the microbial signals.” And she said that although "this poster was done on a different grant ... the research was relevant to the MAPS project." While working on RAPIDS project, Janaye became “highly interested in linkages between MCC and biogeochemistry rates.”
Janaye standing a Milford Tank,
part of an experiment led by Dr. Ted Harris
in the summer of 2018 which will she will
continue this summer (2019). 
     In the fall of 2018 Janaye decided to continue pursuing her research interests in water quality and entered graduate school at KU. Janaye was hired by Dr. Amy Burgin to work as a MAPS graduate research assistant in the Burgin Lab. Janaye explained why she wanted to participate in the MAPS research this way: "I am interested in working on the MAPS research because we live in this delicately interconnected environment that needs to be understood in order to preserve it. Humans are changing our Earth's ecosystem at a rapid rate and understanding out interactions between aquatic, plant, and soil microbes could be a key in establishing policies and practices for a better future." And she added, “During the MAPS project, I hope to better understand connections between the MCC in harmful algae blooms (HABs) and nutrient availability/limitations to be able to better understand the production of cyanotoxins by cyanobacteria.” Her MAPS research will involve conducting a mesocom tank experiment in the summer of 2019. She explained the experiment as follows, “Large tanks will be inoculated with Kansas lake water and different nutrient limitations will be imposed on the tanks. Also, different forms of nutrients, such as nitrogen, will be observed. We will look at which kind of nutrients influence cyanobacteria growth and cyanotoxin production.”
Janaye is from McPherson, KS and is a first year EEB Master's student at the KU. As for her future plans, she hopes to continue a career in research and/or outreach.

Workforce Development, Education and Outreach funding for graduate assistantships is provided by the Kansas NSF EPSCoR RII Track-1 Award OIA-1656006 titled: Microbiomes of Aquatic, Plant, and Soil Systems across Kansas. The grant's workforce development and educational objectives are designed to enhance STEM education in Kansas by supporting activities that will lead to an expanded STEM workforce or prepare a new generation for STEM careers in the areas of aquatic, plant and soil microbiome environments and ecological systems.