|
Lauren conducting field work, working in the lab, and showing a soil sample |
Lauren Chartier has a broad interest in science, particularly Biology, but when she took an Environmental Science course, she became intrigued with soil science. It was her interest in studying microbe communities in soil systems that led her to apply for the Kansas NSF EPSCoR RII track 1 OIA # 165006:
Microbiomes of Aquatic, Plant and Soil systems across Kansas (MAPS) summer research experience for undergraduates (REU) offered at Kansas State University (KSU). Lauren was primarily interested in the KSU REU program because the research opportunity "tied microbiological and soil science to climate change." She liked the idea of conducting research that addressed issues related to "the acceleration of natural global climate change." So when offered an opportunity to work with
Dr. Charles Rice, Distinguished Professor of Agronomy at KSU who specializes in soil microbiology, and who is the Co - Principal Investigator leading the soil systems investigation team for the MAPS project, she eagerly accepted it.
|
Some results from Lauren's study |
The title of Lauren’s study is the
Impact of Drying and Re-wetting Cycles in Microbial Communities in the Tallgrass Prairie, and she describes her project as follows: “My research investigated the short-term effects of drying and re-wetting cycles on soil microbial communities. Previous research done at the
Konza Prairie Biological Station suggested that there might be a long-term, “legacy effect”, on microbial activity and biomass due to moisture variation in the grasslands. However, new data is indicating that there is no legacy effect, so I investigated a 30 year-old experimental plot in Konza to take a closer look at what may be causing similarities between microbial groups. I tested the carbon dioxide concentration, fatty acid biomarkers, inorganic nitrogen, and soil mineral composition in correlation with microbial activity and development to determine whether there really is or is not a legacy effect and what short-term effects might be present.”
Acquiring a new perspective for soil science and for graduate school was the best part of the experience for Lauren. More specifically, she explained, “I gained clear and hands-on exposure to the life and level of performance in graduate schools, while learning about the dynamic and interdependent connections between soil, microbes, plants, and animals.” In addition, she said “I enjoyed learning how to perform the tests used to analyze soil microbes and various characteristics of soil health, but the fascinating thing is those tests can translate into many other scientific fields of study. I learned that in soil science, there is no clear-cut answer to anything. Conditions that apply in one place may not apply in another and the differences may be slight to drastic variations.”
Lauren is from Williamsburg,VA and is currently a student at the
University of Mary Washington (UMW) in Fredericksburg, VA. She is majoring in Biology with a minor in Environmental Science. In addition to her studies, Lauren is a Representative for the Honors Class of 2020, the Secretary of the Biology Student Association (BSA), and Co-Captain of the UMW Women’s Rowing Team. Once she completes her bachelor’s degree, she plans to pursue a master’s degree in an environmental field and possibly earn a PhD. As for her future career plans, Lauren commented, “Ultimately, I would like a career working outdoors with a focus on conservation, or in a field that protects people and nature from the negative repercussions of accelerated climate change.”
Workforce Development, Education and Outreach funding for the MAPS KSU summer REU program is provided by the Kansas NSF EPSCoR RII Track-1 Award OIA-1656006 titled: Microbiomes of Aquatic, Plant, and Soil Systems across Kansas. The award's workforce development and educational objectives are designed to enhance STEM education in Kansas by supporting activities that will lead to an expanded STEM workforce or prepare a new generation for STEM careers in the areas of aquatic, plant and soil microbiome environments and ecological systems