Welcome...

Welcome to the archive of Kansas NSF EPSCoR (KNE) news and announcements blog. Stay up-to-date with all the happenings, discoveries, events and funding opportunities associated with KNE by visiting https://nsfepscor.ku.edu./

Tuesday, December 8, 2015

Summer Undergraduate Research Opportunity in AMO Physics

The Kansas NSF EPSCoR Track 2 Grant provides support for three Kansas undergraduate students to conduct Atomic, Molecular and Optical Physics research at Kansas State University during the summer of 2016. Students who are accepted into the program will receive a $5,200 stipend and have both travel expenses as well as on-campus room and board covered.

Students interested in the chemistry and/or physics associated with Atomic, Molecular and Optical Phyics should apply through this link:

K-State AMO Physics Summer 2016 REU
(only online applications are accepted)





For more information go to: https://www.phys.ksu.edu/images/reu/flyer.pdf .

Education and outreach funding for this REU opportunity is provided by the Kansas and Nebraska NSF EPSCoR Track 2 Grant #1430519 titled: "Imaging and Controlling Ultrafast Dynamics of Atoms, Molecules, and Nanostructures."  The grant's educational objectives are designed to enhance STEM education in Kansas by supporting activities that will lead to an expanded STEM workforce or prepare a new generation for STEM careers in the areas of atomic/molecular/optical science.

Wednesday, December 2, 2015

EPSCoR Interjurisdictional Collaborative Funding Opportunity: FY 2016 RII Track-2 FEC

    The National Science Foundation Experimental Program to Stimulate Competitive Research (EPSCoR) is currently offering a collaborative funding opportunity within its RII Track-2 FEC grant program initiative. The RII Track-2 FEC grants are designed to build interjurisdictional collaborative teams of EPSCoR investigators in scientific focus areas consistent with NSF priorities. Projects are investigator-driven, have at least one co-PI and must include researchers from at least two RII-eligible jurisdictions.  Proposals must describe a comprehensive and integrated vision to drive discovery and build sustainable Science, Technology, Engineering, and Mathematics (STEM) capacity.  The education activities should seek to broaden participation of different types of individuals, institutions, and sectors. In addition, the development and support of diverse early-career faculty is critical to the sustainability of STEM capacity. Only one proposal can be submitted for a project.  Separately submitted collaborative proposals are not allowed.

Researchers interested in participating in the FY 2016 RII Track-2 FEC process are invited to submit proposals on two topics: 
      1. Understanding the Brain; and 
      2. Sustainable Food, Energy, and Water Systems.

DUE DATES:
      Letter of Intent Deadline Date:  January 11, 2016
      Full Proposal Deadline Date:  February 4, 2016

For more information go to: 
EPSCoR Research Infrastructure Improvement Program: Track-2 Focused EPSCoR Collaborations (RII Track-2 FEC)


Friday, November 13, 2015

Hispanic Students Explore Fiber Optics and the Internet at the 9th Annual Si Se Puede Hacer Ciencias y Matimaticas Program

Dr. Trallero conducting a demonstration
   Dr. Carlos Trallero, Assistant Professor in the Department of Physics at Kansas State University (KSU) traveled to Emporia State University (ESU) on Halloween to work with some of the more than 50 Hispanic middle school students attending ESU’s 9th Annual Si Se Puede Hacer Ciencias y Matimaticas Program. The purpose of the Si Se Puede Hacer Ciencias y Matimaticas Saturday event was to allow students to interact with Hispanic professionals who work in STEM (Science, Technology, Engineering, and Mathematics) fields. This year’s program featured four hands-on workshops taught in a small group settting. Dr. Betsy Yanik, Professor of Mathematics and Si Se Puede Hacer Ciencias y Matimaticas Director at ESU created the Saturday workshop opportunity to spark STEM interest among participants and address the country’s need for more graduates from underrepresented groups to pursue degrees and careers in STEM fields.
    In Trallero's workshop, he posed the question "How does the internet work?" After a brief discussion, students observed demonstrations illustrating how fiber optics actually work. Trallero commented, "the students enjoyed seeing how light is bended as it transmits through fiber optics, the backbone of the internet." To provide some additional one on one instructional assistance, Trallero invited Kansas native and first generation KSU Physics student Jaime Minjarez to join him.  Following the demonstrations, Trallero and Minjarez fielded questions as students discovered how to build a motor with just copper wire, a battery and a magnet.

Students building motors
   Trallero and Minjarez considered the experience both fun and rewarding, and they plan to participate in the program again next year.

The Kansas EPSCoR office supported the visit of Professor Carlos A. Trallero and student Jaime Minjarez of the Physics Department and the James R. Macdonald Laboratory at Kansas State University through the outreach program of a Kansas-Nebraska EPSCoR Track II grant.




Friday, November 6, 2015

EPSCoR EOD Grant Provides Kansas Teachers with "STEM Education Through Sustainable Energy" Curriculum Modules


     Dr. Deepak Gupta, Associate Professor and Director of Engineering Technology at Wichita State University (WSU), used his 2014 Kansas NSF EPSCoR Education, Outreach and Diversity Grant to create the "STEM Education Through Sustainable Energy" teaching modules. Gupta’s team at WSU worked with educators from the surrounding school districts to develop lessons incorporating the Next Generation Science Standards .

     The three main goals of the project were: to create modular sustainable energy systems curriculum in conjunction with feedback from area educators on the curriculum; to train area educators on how to use the curriculum; and  to present portions of the curriculum to secondary students for additional feedback. One of many highlights of this effort was the collaboration established between educators at area schools and at WSU.  Another highlight was the involvement of WSU students in presenting the new curriculum to area high school teachers and in mentoring middle school students in the area.

     Overall this educational outreach effort impacted 100 middle school students from Andover Middle School; 15 middle school Math and Science teachers from across the Wichita Independent School District; and 12 educators and 10 students from the Maize High School in Maize, KS. In addition, the new curriculum modules were discussed with 5 faculty, 2 administrators and 15 pre-engineering students from Hutchinson Community College and Butler Community College as well as with two administrators from the Kansas Center for Career and Technical Education (KCCTE) at Pittsburg State University.
   
The following teaching modules were created as part of this project:
  • Introduction to Energy – 3 modules
  • Forms of Energy – 1 module
  • Energy Transformations – 1 module
  • Sources of Energy – 1 module
  • Energy Sustainability – 2 modules
  • Energy Efficiency – 2 modules
  • Solar Energy – 2 modules
  • Solar Photovoltaics – 2 modules
      Links to the the entire set of "STEM Education Through Sustainable Energy" Curriculum can be found on the WSU Engineering Technology website. 

     In the near future the curriculum group plans to make the teaching modules available on the Resource Library page on the Pittsburg State’s Kansas Center for Career and Technical Education (KCCTE) website.

Kansas NSF EPSCoR Education and Diversity Grants focus on encouraging the next generation of Kansas student to consider STEM careers in the areas of climate or energy research or atomic, molecular and optical science and are designed to enhance science, technology, engineering and mathematics (STEM) education in Kansas.  

Thursday, October 22, 2015

The Kansas, Nebraska "Collaborative Research: Imaging and Controlling Ultrafast Dynamics of Atoms, Molecules, and Nanostructures" NSF Track 2 Grant supports collaborative outreach to small college faculty

Dr. Hui Zhao and Dr. Benjamin Tayo
       A unique partnership has formed between, Dr. Benjamin O. Tayo Assistant Professor of Physics at Pittsburg State University and Dr. Hui Zhao, Associate Professor of Physics and Astronomy at the University of Kansas as part of the educational outreach initiatives funded by the NSF EPSCoR grant titled "Collaborative Research: Imaging and Controlling Ultrafast Dynamics of Atoms, Molecules, and Nanostructures", #1430519.  This educational initiative provides funding support for a small college physics faculty member to work closely with one of the key researchers on the grant project. Their educational plan involves collaborating on research, co-authoring any publications that may result from their research and developing related curriculum to enhance Pittsburg State’s physics curriculum.
Dr. Zhao conducting experiments in his lab
     Their research focuses on the theoretical studies of the electronic and optical properties of two-dimensional crystals. In particular, Tayo has been working on modeling the properties of the W1-xMoxS2 alloy as a function of the composition x. He surmised "that being able to characterize the electronic properties of this alloy for composition x could possibly lead to advanced functional materials with properties superior to that of the individual materials MoS2 and WS2."  Zhao added, “We are performing experiments to be compared with the model. This will help understand electronic states in these alloys. Such knowledge contributes to the goal of controlling electrons in these materials with light.” Furthermore, he emphasized “this collaborative research clearly aligns with the emphasis for the Thrust 2 research effort of the grant directed at two-dimensional materials.” Zhao will perform experimental studies as part of their proposed research activities. Tayo will provide theoretical and numerical capabilities to improve the understanding of these properties that will enhance the impact of the collaborative work.  They both hope “to find new ways of controlling the electronic and optical properties of 2D materials” using theoretical calculations to explain and complement the experimental findings. From this collaborative research project, they hope to use their data tested theories in future studies and experiments.
        Students have also benefited from this collaborative initiative.  Each professor has had the opportunity to involve a graduate student in the project. Tayo’s graduate student worked with him throughout the summer, and although his graduate student found the research a little challenging, it has sparked his interest in the field.  As a result, Tayo's graduate student enrolled in a topics class titled “Density Functional Theory” to improve his understanding of electronic and optical  physics.  With this enhancement of his knowledge base, he can then start performing some calculations for the experiments.  Zhao is also supporting a graduate student who is performing the related experiments
     Tayo summarized the experience so far by saying:
I am grateful that by means of this collaboration, I was really busy last summer carrying out research. The knowledge gain so far has helped me a lot and it’s very useful for the students as I incorporate some of the knowledge into my teaching. I would strongly recommend the program to my colleagues because being active in research really enhances the depth of your knowledge and makes you to become a better teacher.
     And Zhao added:
The goals were to involve faculty members from small colleges in cutting edge research that would eventually transfer benefits to their students. The theory-experimental collaboration model is a perfect way to accomplish this since it doesn’t require facilities from the small college partner.
     Tayo and Zhao will continue their collaboration throughout the remainder of the academic school year.

The  Kansas and Nebraska NSF EPSCoR Imaging and Controlling Ultrafast Dynamics of Atoms, Molecules, and Nanostructures, #1430519  Track 2 Grant is designed to enhance STEM education in Kansas by supporting activities that will lead to an expanded STEM workforce or prepare a new generation for STEM careers in the areas of atomic/molecular/optical science.


Monday, October 12, 2015

Kansas and Nebraska present a Symposium on Ultrafast Dynamics of Atoms, Molecules and Nanostructures

     Over 100 university faculty and students attended the 2015 Nebraska Research & Innovation Conference Symposium on Ultrafast Dynamics of Atoms, Molecules & Nanostructures held September 28-29, 2015 at the Embassy Suites Hotel in Lincoln, Nebraska.  The symposium was sponsored by both the Kansas NSF EPSCoR and the Nebraska NSF EPSCoR programs.
Program speakers and participants
     The seminar featured guest presentations by Dr. Mark I. Stockman, Georgia State University, who discussed Condensed Matter in Ultrafast and Superstrong Fields: Attosecond PhenomenaDr. Anatoly Svidzinsky, Texas A&M University, who discussed QASER: From Radio Frequencies to Optical DomainDr. Philip H. Bucksbaum, Stanford University, who discussed Ultrafast Electron Motion in Atoms and Molecules;  Dr. Stephen Leone, University of California, Berkeley, who discussed Attosecond Dynamics: From Atoms to Semiconductor Solids; and Dr. Todd Martinez, Stanford University, who discussed Understanding and Modeling Ultrafast Molecular Dynamics from First Principles.
Dr. Martin Centurion; Dr.Vinod Kumarappan; Dr. Hui Zhao
      The speaker sessions closed with three presentations from the Kansas and Nebraska researchers currently involved in the collaborative NSF EPSCoR Track 2 Grant (#1430519) titled Collaborative Research: Imaging and Controlling Ultrafast Dynamics of Atoms, Molecules, and Nanostructures.  Dr. Martin Centurion, represented the University of Nebraska-Lincoln and discussed Diffractive Imaging of Isolated Molecules with Femtosecond Electron Pulses.  Dr. Vinod Kumarappan represented Kansas State University and discussed Diffractive Imaging of Isolated Molecules with Femtosecond Electron Pulses.   And, Dr. Hui Zhao represented the University of Kansas and discussed Ultrafast Electron Transport In and Between Single Atomic Layers.
Symposium Poster Session
     The day concluded with over 30 undergraduate and graduate students, post docs and faculty from across Kansas and Nebraska participating in the poster session that showcased their research in Atomic, Molecular and Optical Physics.

Thursday, October 8, 2015

KU Geography PhD Candidate and HERS Alum featured in the Spring 2015 Edition of "Winds of Change"


Winds of Change Spring 2015
     David Ward published an article in the spring 2015 issue of the  Winds of Change titled “Doing Something About The Weather: The forecast is calling for growth in climate-related careers.”  In the article, he discussed the surge of public awareness regarding climate change and the career opportunities it is producing. Ward also highlighted several students' learning experiences within these new interdisciplinary climate change academic programs that are developing at universities across the United States. Ward found most programs were very receptive to collaborating with other disciplines and concluded this cross curricular approach was better preparing students to enter the climate change workforce.  In addition, he discovered a growing trend that many of these climate-related programs were very interested in working directly with tribal communities or with Native American students researching how changing weather patterns are impacting Indian Country.
Winds of Change, Spring 2015
      Paulette Blanchard, Absentee Shawnee and alum of the Kansas EPSCoR educational collaboration with the Haskell Environmental Research Studies initiative (HERS), was one of the students featured in the article. She credits her interest in climate change and the environment to the HERS summer internship experience she had while attending Haskell Indian Nation University as an undergraduate.
      Following her undergraduate career, Blanchard completed a master’s degree at the University of Oklahoma studying at the South Central Climate Science Center. Her research focused on how climate and geography were impacting tribes across several states.  She found that tribes were aware of climate change because it impacted them personally, socially and economically.  However, she was not sure if they were trying to combat it as much as trying to survive it.  She commented that the “challenge was there were 63 tribes in the area and three fourths of them are…not situated in areas that can provide economic stability.” Furthermore, she mentioned that many of the communities were struggling to find sources of quality water, to build energy-efficient homes or invest solar powered systems.
     Blanchard supports the interdisciplinary approach to a climate change education because it addresses the many aspects of the tribal communities' concerns and prepares students to work with them.  She recognized the importance for any one working with these communities to understand the social and cultural dynamics, the history, the economics and the politics of the community that is being supported and that “cultural competency was a must.”

Paulette is currently pursuing her PhD in the Department of Geography at the University of Kansas.  

HERS provides the platform for various stages of support for programs of interest to American Indian/Alaska native communities, most recently focused on the effects of climate change on indigenous communities.